
DOCUMENTATION
SOFTWARE ENGINEERING

DOCUMENTATION

FACETS OF SOFTWARE ENGINEERING

▸ Requirements

▸ Design & Architecture

▸ Implementation

▸ Quality Assurance

▸ Documentation

▸ Packaging & Delivery

▸ Maintenance & Support

Team Process

DOCUMENTATION

OVERVIEW

▸ Any mechanism used to teach users how to interact with an
application

▸ Hard copy manual

▸ Website

▸ Tutorials (written walkthrough, video)

▸ Tooltips / Balloon Help

▸ Game Introductory Segments

▸ Kiosk Menus

DOCUMENTATION

OVERVIEW

▸ Product v. Project

▸ Product documentation commonly written by a documentation team

▸ Professional, trained technical writers

▸ Requires close interaction with developers (don’t always get it)

▸ Project documentation usually provided by the developers

▸ Often isn’t very good

▸ Versioned (“since version X”)

DOCUMENTATION

CONSIDERATIONS (1 OF 2)

▸ Intended audience

▸ Administrators (“admins”)

▸ Users

▸ Deployers (person installing/configuring the product)

DOCUMENTATION

CONSIDERATIONS (2 OF 2)

▸ Level of prerequisite knowledge required

▸ Don’t make assumptions about your readers’ experience

▸ Accessibility considerations

▸ Visually Impaired (e.g. color blind)

▸ Physically Impaired

TYPES OF DOCUMENTATION

DOCUMENTATION

INSTALLATION GUIDE

▸ Provide both clean installation and upgrade instructions

▸ List prerequisites

▸ Hardware specs

▸ Networking specs

▸ Base operating system

▸ Dependencies

▸ Differentiate between different levels of configuration

▸ Basic (can be similar to a “Quick Start” guide)

▸ Advanced

▸ Security

▸ Example: http://docs.pulpproject.org/en/2.11/user-guide/installation/index.html

http://docs.pulpproject.org/en/2.11/user-guide/installation/index.html

DOCUMENTATION

RELEASE NOTES

▸ Describe the differences between application versions

▸ Highlight new features

▸ Typically list fixed bugs

▸ List current “known issues”

▸ Include installation notes and upgrade concerns (if any)

▸ Example: http://docs.pulpproject.org/en/2.11/user-guide/
release-notes/index.html

http://docs.pulpproject.org/en/2.11/user-guide/release-notes/index.html
http://docs.pulpproject.org/en/2.11/user-guide/release-notes/index.html
http://docs.pulpproject.org/en/2.11/user-guide/release-notes/index.html

DOCUMENTATION

USER DOCUMENTATION (1 OF 2)

▸ Benefits of web-based over hard copy

▸ Can be written after code freeze

▸ Can be updated after release

▸ Typically scoped to a user type (Administrator, User, etc.)

DOCUMENTATION

USER DOCUMENTATION (2 OF 2)

▸ Often found in the application (the “Help” menu)

▸ Typically

▸ Formal

▸ Professionally written

▸ Undergo an approval process

▸ Example: http://docs.pulpproject.org/en/2.11/user-guide/

http://docs.pulpproject.org/en/2.11/user-guide/

DOCUMENTATION

DEVELOPER GUIDES

▸ Describe how to interact programmatically with the application

▸ How to use a library

▸ How to write a plugin

▸ Explains how to contribute to the code (open or closed source)

▸ Environment setup

▸ Style guidelines

▸ Contribution policies

▸ Example: http://docs.pulpproject.org/en/2.11/dev-guide/index.html

http://docs.pulpproject.org/en/2.11/dev-guide/index.html

DOCUMENTATION

API DOCUMENTATION

▸ Describes how to use an external service

▸ Should describe inputs and outputs to the call

▸ Should include example data (IMO)

▸ Example APIs:

▸ Integration with Facebook for authentication

▸ Mobile apps for a service (Twitter, Instagram, etc.)

▸ Loose coupling of internal systems

▸ Example: http://docs.pulpproject.org/en/2.11/dev-guide/integration/rest-api/
index.html

http://docs.pulpproject.org/en/2.11/dev-guide/integration/rest-api/index.html
http://docs.pulpproject.org/en/2.11/dev-guide/integration/rest-api/index.html

DOCUMENTATION

CODE DOCUMENTATION

▸ Each language has a specific format

▸ Java: // or /* */

▸ Python: # or “””<text>”””

▸ Types:

▸ In code comments (why something behaves a particular way)

▸ Class / method documentation

▸ Tools can generate API documentation by inspecting comments

▸ Example: http://okaara.readthedocs.org/en/latest/#api-documentation

http://okaara.readthedocs.org/en/latest/#api-documentation

CODE DOCUMENTATION

DOCUMENTATION

CODE DOCUMENTATION OVERVIEW (1 OF 2)

▸ In-code documentation to describe how to use the code’s
modules, classes, methods, and variables

▸ Written for other developers (ignored by the compiler in
most cases)

▸ Structured format built on top of the language’s built-in
comment syntax

DOCUMENTATION

CODE DOCUMENTATION OVERVIEW (2 OF 2)

▸ External tool used to generate a formatted version
(typically HTML)

▸ IDE’s typically have support to render and display

▸ Often nowhere near as detailed as it should be

DOCUMENTATION

JAVADOC

▸ Included with the JDK

▸ Reads comments that begin with /** (not /*)

▸ Tags are indicated using the @ symbol

▸ Comments may include HTML tags

▸ <code> and are the most common

▸ First sentence of the method documentation is used as the
summary

DOCUMENTATION

WHAT TO DOCUMENT (1 OF 4)

▸ Package

▸ Description of the scope of the functionality found in the
package

▸ Not commonly done

DOCUMENTATION

WHAT TO DOCUMENT (2 OF 4)

▸ Class / Module

▸ Description of the purpose of the class, how to work with it, and
any external requirements for using it

▸ Tags

▸ @author <name>

▸ typically frowned upon

▸ @version <version>

▸ typically not used in favor of tracking through version control

DOCUMENTATION

WHAT TO DOCUMENT (3 OF 4)

▸ Method

▸ Description of what the method does, if there are side effects, and any preconditions that must exist
before calling it

▸ Tags

▸ @param <name> <description>

▸ describes a single parameter passed when calling the method

▸ should indicate valid and invalid values

▸ specify once per parameter

▸ @return <description>

▸ describes what the returned value represents

▸ should indicate if null may be returned

▸ only specified once (most languages are single return)

DOCUMENTATION

▸ Method (continued)

▸ Tags

▸ @throws <exception_class> <description>

▸ describes a single exception that may be thrown

▸ should indicate the conditions under which it is thrown

▸ specified once per likely exception

▸ no need to document every single possibility (such as OutOfMemoryError)

▸ @deprecated <optional_description>

▸ indicates if the method should no longer be used (no longer supported, has known
bugs, etc.)

▸ should specify what to use as a replacement

DOCUMENTATION

WHAT TO DOCUMENT (4 OF 4)

▸ Variable

▸ Description of what the variable is used for and any criteria
about it’s possible values

▸ Example criteria:

▸ expected range

▸ units

▸ Documentation of public v. private variables will differ by
project

DOCUMENTATION

RESOURCES & EXAMPLES

▸ Java API

▸ https://docs.oracle.com/javase/7/docs/api/

▸ Liferay Javadoc Guidelines

▸ https://dev.liferay.com/participate/javadoc-guidelines?
_ga=1.163421628.1056016496.1459185780

▸ JUnit API (assertions in particular)

▸ http://junit.sourceforge.net/javadoc/org/junit/Assert.html

https://docs.oracle.com/javase/7/docs/api/
https://dev.liferay.com/participate/javadoc-guidelines?_ga=1.163421628.1056016496.1459185780
https://dev.liferay.com/participate/javadoc-guidelines?_ga=1.163421628.1056016496.1459185780
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

DOCUMENTATION

HOMEWORK

▸ Quiz

